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Abstract

Earlier efforts to automatically perform property
appraisal by using multi-modal input features
have relied on relatively shallow neural network
architectures. This study proposes a new architec-
ture combining a feed-forward and DenseNet con-
volutional neural networks, whilst applying trans-
fer learning and advanced regularisation tech-
niques to tackle the task more effectively. Ad-
ditionally, to account for the property market
diversity across various locations and sales pe-
riods, we propose a geo-temporally normalised
objective (loss) function. Lastly, our research is
the first to experiment with the incorporation of
point-of-interest and transport maps in the input
feature set. All experiments were conducted on
a partially self-collected Latvian apartment sales
dataset. On the task of apartment value predic-
tion, the introduced architecture trained using the
proposed geo-temporal normalisation loss func-
tions achieves a 0.7287 R? score, outperforming
previously employed methods from the real es-
tate literature.

1. Introduction

Property appraisal is the process of assessing the current
market value of a given real estate. Unfortunately, the ap-
praisal procedure is expensive and time-consuming as it is
typically done by a manual site inspection. This challenge
could be effectively addressed by employing automatic real
estate valuation techniques, ensuring rapid and inexpensive
property valuation. Moreover, the use of automatic property
appraisal tools would ensure consistency and reduce vari-
ation, as the decision of human valuers can be influenced
by the knowledge of previous value estimates or by the
presence of the client (Baum et al., 2021). Additionally, an
automatic appraisal can be used by governmental institu-
tions to detect tax fraud by comparing the model-predicted
price with the listed property sale price.

This research focuses on developing a deep-learning prop-
erty appraisal model that predicts the price based on the
property’s quantifiable attributes and the spatial visual infor-
mation of the surrounding area presented through various
maps. More specifically, we propose a novel multi-modal
architecture, combining DenseNet (Huang et al., 2017) and
feed-forward architectures that accommodate quantitative

tabular and image data input types with improved regulari-
sation techniques.

Additionally, based on the findings of Yang et al. (2020)
and Vivian W. Y. Tam & Ma (2022), which demonstrate
a correlation between property value and the proximity
of transportation and neighbourhood amenities, we utilise
transportation map and point-of-interest (POI) map as input
values of the price prediction model.

Lastly, to account for the high variance in property prices
in various locations and sale times, we propose a novel
objective loss function that abstracts away from the market
dynamics, allowing for accurate price prediction.

This study aims to:

1. Develop a new geo-temporally normalised loss func-
tion for property valuation and compare its perfor-
mance to conventional MSE objective function.

2. Investigate the effect on model performance when
point-of-interest maps and transportation maps are
added to the input feature set alongside satellite im-
agery.

3. Propose and evaluate a deep multi-modal network for
property price prediction, which combines DenseNet
and feed-forward architectures with improved regular-
isation techniques. Compare its performance against
baselines from real estate valuation literature.

All experiments are conducted using open-source Latvian
government data of apartment sales over the past three
decades, along with additional self-collected map images.

2. Related Work

Various research studies have been conducted in the do-
main of housing value estimation with multi-modal deep
neural architectures utilising spatial visual images of the
surrounding area, each modelling the complex dynamics of
real estate markets.

Bin et al. (2019) propose a network architecture inspired by
attention mechanisms for predicting house prices in Los An-
geles, USA. They utilise a three-layer convolutional neural
network (CNN) to extract features from street map images.
These features, along with house attributes, are then pro-
cessed through attention blocks and a feed-forward network.
The resulting encodings serve as features to train a boosted
regression tree, which is used for estimating house values.
Their research supports the claim that the incorporation of
spatial information improves the performance of the real



estate valuation model.

Alternatively, Bency et al. (2017) collect satellite images at
various scales and apply fine-tuned Inception v3 (Szegedy
et al., 2016) CNNs for feature extraction. The image fea-
tures are combined with house attributes and nearby point-
of-interest locations and parsed through a feed-forward
network to predict the house price. The researchers exper-
imented with data from London, Birmingham, and Liv-
erpool and concluded that satellite image features and
POI attributes contribute to a significant improvement in
model performance. We take inspiration from the proposed
method and utilise point-of-interest data for property price
prediction. However, we incorporate POI data into the prop-
erty price prediction model as image data. Additionally,
our study aims to develop a general model applicable to
the entire housing market of a country, rather than having
separate models for each city tested, as done by Bency et al.
(2017).

The research of Azizi & Rudnytskyi (2022) proposes a
multi-modal architecture where property attributes are
parsed through a feed-forward network and fed into an-
other feed-forward network along with three-layer CNN
features extracted from a satellite image. Drawing inspi-
ration from their method, we aim to create a single model
applicable to the entire housing market of a country, similar
to the study’s approach, which developed a housing price
estimation model for the whole of Switzerland. We use
their proposed method as a baseline and develop our model
by modifying their network architecture. Specifically, we
utilise a deeper CNN and replace late fusion with interme-
diate fusion, arguing that with such modification, the model
might learn more complex associations.

It must be highlighted that the aforementioned studies use
the property’s coordinates as one of their inputs, whereas
we intend to make our model location agnostic, prevent-
ing the model from making associations with expensive or
moderately priced areas.

In their work Law et al. (2019) utilise VGG CNNs (Si-
monyan & Zisserman, 2015) to extract features from street
view and satellite images and parse them through a feed-
forward neural network, alongside house attributes encoded
using a feed-forward network. The researchers test their
proposed method on properties in London. Inspired by the
proposed architecture, our study employs intermediate fu-
sion and further explores the impact of model depth on the
correctness of property price predictions. Hence, Law et al.
(2019)’s work is selected as our second baseline.

Our research highlights and addresses the research gap
by developing a country-level apartment prediction model
independent of the property location and time of sale by
proposing a deep multi-modal architecture with a greater
level of regularisation.

3. Dataset and Task
3.1. Quantitative Data

The experiments are conducted using a publicly available
real estate market database created and maintained by the
State Land Service of Latvia'. The data consists of all real
estate transactions registered in Latvia’s digital land register
from 1998 until 2024. We extract a subset of the original
dataset, comprising only apartment sales. For every apart-
ment, the extracted feature set includes the transaction and
property identifier, address, closest city or town (referred
to as "town" in this paper), date of transaction, property
price, building material, number of floors in the apartment
building, years when the building received a certificate of
occupancy?, floor area of the apartment, floors on which the
apartment is located, and indicators of whether the apart-
ment building has any public® or commercial space. We
clean the data by removing duplicate entries, any entries
with missing values, and properties where the room count
is less than one.

The building material is encoded with 1-hot encoding in
four types: brick, wood, concrete, and others. Based on
information on the years the building obtained its certificate
of occupancy, two features are included for each property,
illustrating the year the building was built and the year it
had its most recent refurbishment. Furthermore, we cal-
culate the number of floors an apartment has. Additional
features for each property are introduced to account for
discrepancies in property values across different years and
various towns of Latvia due to historical price trends and
differences between local property markets. We calculate
the property price per m?, the average price per year per
town per m?, the normalised property price per m?> (see
Section 4.3) and the floor count within the flat. If the prop-
erty price per m? is less than 10 euros, the transaction is
discarded.

We utilise Bing Locations API* to obtain the longitude and
latitude of the property based on the apartment address.
Additionally, we acquire the geographical centre coordi-
nates of all cities in Latvia from the Latvian Wikipedia®.
Using the collected locations, we calculate each property’s
distance to its respective town centre and add it to the fea-
ture set. Assuming every site in Latvia is within a 40 km
distance from a town, properties with a distance measure
greater than 40 km are discarded, indicating an incorrect lo-
cation response from the API. Based on the analysis of API
responses, we approximate that above 20% of the property
coordinates were faulty.

!data.gov.lv/dati/lv/dataset/nekustama-ipasuma-tirgus-datu-
bazes-atvertie-dati

2Certificate of Occupancy is a document certifying that a build-
ing complies with build standards and is suitable for occupancy.

3Community facilities, such as educational, religious, health
and social institutions.

4learn.microsoft.com/en-us/bingmaps/rest-
services/locations/find-a-location-by-address

Slv.wikipedia.org


https://data.gov.lv/dati/lv/dataset/nekustama-ipasuma-tirgus-datu-bazes-atvertie-dati
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Abbr.

Date of sale
Price, EUR
Price per m?, EUR
Normalised price per m*, EUR
Average town price per m?, EUR
Has commercial space?
Has public space?
Floors in building T
Building built year
Building last renovation year
Material of building (brick, wood, concrete,
other)
Floor number
Number of floors in apartment
Number of rooms
Floor area, m?
Distance to centre
80 m radius satellite image (250x250) Sgo
300 m radius satellite image (250x250) S300
600 m radius transport map image (250x250) | TM
600 m radius Tracestrack Topo map image POI
(250x250)

Quantitative Features

Images

Table 1. The set of all available features in our dataset.

To account for the various market dynamics, the proper-
ties can be grouped into categories such as luxury housing
or rural housing. It is appropriate to cluster the proper-
ties with similar characteristics together before performing
automated outlier detection (Ozer & Okan Sakar, 2022),
regardless of their price. Principal Component Analysis
(PCA) is performed on all features, excluding the price-
related descriptors. The first five principal components
are retained, and K-means clustering with 10 clusters is
performed. In every cluster, all data points outside the
1.5 * IQR (interquartile range) of the property price per m>
are considered outliers and are discarded.

3.2. Image Data

Furthermore, satellites.pro and openstreetmap.org map ser-
vices are utilised to obtain four 250x250 coloured images
for every property. These images encompass two satel-
lite views, with one covering an 80 m radius surrounding
the property and the other extending to a 300 m radius.
Additionally, the image set includes a 600 m radius trans-
port map illustrating public transport routes and a Traces-
track Topo map displaying tags of nearby POI. To optimize
the fetching process and the size of the dataset, proper-
ties within 10-meter proximity have been merged, and they
share the satellite and OSM images.

The cleaned dataset consists of 149,997 property transac-
tions with the respective features and images. The dataset
is split into training (85%), validation (5%) and two testing
sets (each 5%). The first test set consists of randomly
sampled properties, whereas the other test set consists
of all properties located in the towns of Rézekne, Ogre,
and Valmiera. It has been ensured that no geographically
merged location images are ’shared’ between sets. We in-
tend to use the unseen town set to evaluate the model’s
ability to forecast the property price in a previously unseen

environment. The full feature set is illustrated in Table 1.

4. Methodology
4.1. Baseline models

To assess the viability of our proposed model, we assess
its performance against network architectures from multi-
modal property valuation literature. In this subsection, we
introduce the architectures of the selected baselines.
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Figure 1. Diagram showing our adaptations of the architectures
of Azizi & Rudnytskyi (2022) and Law et al. (2019). Those will
serve as our baselines. Details about the architecture of VGG-16
are covered by Simonyan & Zisserman (2015).

The first baseline is a CNN architecture composed of three
convolutional layers that take as input concatenated images
and produce an output which gets flattened and is processed
by 2 linear transformations (Azizi & Rudnytskyi, 2022).
The tabular input of the network is processed by 5 linear
transformations. The results of each of the parts of the
model are then concatenated together and passed through a
final linear layer, highlighting the use of late fusion. The
activation function after each transformation is the ReLU
function. Additionally for regularization dropout (Srivas-



Baseline Original features Proxy features Abbr.
Living space, m? Floor Area, m”
Number of rooms Number of rooms
- Ts
1. Longitude Distance
Latitude
. 80 m radius
Satellite image satellite image Sso
Has public space?
Type Has commercial
space?
Year Date of sale T
A Building built §
ge
year
’ Size Floor Area, m”
’ Beds Number of rooms
Park 600 m radius
Shop Tracestrack Topo POI
Gravity map image
Satellite image si(t)egllirtleriar(rlllz;lgse S300
Streetview - -

Table 2. The quantitative features for the skinny baseline. The
italics in the table highlight cases where the proxy relation was
particularly weak. 1. Azizi & Rudnytskyi (2022); 2. Law et al.
(2019)

tava et al., 2014) and batch normalization (Ioffe & Szegedy,
2015) were used at various points. A more detailed outline
of the model is illustrated in Figure 1.

Additionally, as the second baseline, we choose an archi-
tecture proposed by Law et al. (2019), who utilised a CNN
architecture inspired by VGG-16 network (Simonyan &
Zisserman, 2015) to parse images. Contrary to Azizi &
Rudnytskyi (2022) they did not concatenate the images, but
rather used a separate CNN for each of the images. The out-
puts of these CNNs were flattened and directly concatenated
with the output of tabular transforms. The tabular input of
the network was processed by 2 linear transformations. The
result after fusing the outputs was then passed through 2
further linear transformations, indicating intermediate fu-
sion. The activation function after each transformation was
the ReLU function. A more detailed outline of the model is
illustrated in Figure 1.

We intend to train and compare both of these architectures
in two different scenarios with varying input features. First,
both baselines will be trained using the features, the authors
have used in their original research. Further, models will
be provided with the entire set of features available in our
dataset, and training will be conducted. Unfortunately, our
dataset does not have the exact features that the authors of
the discussed papers had used in their research. Hence, we
will be using the proxies closest to these features that are
available in our data set (see Table 2). The models using the
full set of features are referred to as augmented baselines,
while those utilizing the limited set are referred to as skinny
baselines.

4.2. Proposed Architecture

We propose a multi-modal architecture that combines image
features with tabular data using intermediate fusion and
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Figure 2. Diagram showing the architecture of the proposed model
in various development stages. Layers in bold are initialized with
pre-trained parameters, and the layers grouped with a snowflake
are frozen (suppressed weight updates) for the duration of training.
Details about the architecture of DenseNet-121 are covered by
Huang et al. (2017).

employs transfer learning. The network encompasses the
DenseNet-121 architecture (Huang et al., 2017) for image
processing followed by an affine layer. The outputs of the
CNN networks are concatenated with the parsed tabular
data and processed through feed-forward blocks to make a
price estimation. The multi-modal architecture is illustrated
in Figure 2. Initially, we train separate models that utilise
only tabular data and image data, after which we transfer
the pre-trained weights to the multi-modal architecture. In
this section, we explain the rationale and the development
process of the proposed network.

We began the model development by designing an architec-
ture that utilises only tabular data for apartment price pre-
diction. Inspired by the work done by Jiang et al. (2022) we
utilised feed-forward blocks which are composed of batch
normalization (Ioffe & Szegedy, 2015), affine transforma-
tion, rectified linear unit (ReLU) and finally, a dropout layer
(Srivastava et al., 2014). The depth of the model was tuned
to be 10 layers. This decision was based on experimentation
with various depths, and 10 layer architecture was the shal-
lowest architecture that could fit the training data extremely
well (Not Densely Connected* in Table 3). The width of



. Train | Valid
Experiment Epoch MSE R2

Densely Connected 191 0.1584 | 0.5849

Not Densely Connected* 200 0.0331 | 0.5480

0.2 200 0.2236 | 0.7555

Dropout 0.5x 1072 93 0.2000 | 0.7977

2.5%x 1072 83 0.1895 | 0.8182

1x1073 42 0.1524 | 0.7797

0.1 157 0.1881 | 0.8221

L2 Decay | 0.5x 1072 189 0.1843 | 0.8265

2.5x%1072 194 0.1819 | 0.8232

1x107* 93 0.1810 | 0.8063

LR 1x107° 189 0.1843 | 0.8265

1x10°8 200 0.7947 | 0.1312

Table 3. The best epoch metrics of the most important experiments
for tabular architecture tuning. Entries in bold are the best in their
comparison group. ‘Epoch indicates the number of epochs where
these results appeared. Valid - Validation; LR - Learning rate; Not
Densely Connected* - No regularization applied

the hidden dimensions was tuned in the same experiment
resulting in the following hidden dimensions: [400, 400,
400, 1600, 1600, 1600, 1600, 400, 400] (Original Tabular
in Figure 2).

Further, we built a Fusable Tabular model, which would
be trained on tabular data only, but additionally appends
padding to the layer where in the future the parameters
from the image layers will come in. This peculiar differ-
ence between Original Tabular and Fusable Tabular will
allow us to transfer all weights from the Fusable Tabular
Model into the final Fusion Model which will replace the
padding with the output of the image layers. The point of
fusion was selected to be 4 feed-forward blocks before the
output, inspired by similar papers fusing image data at an
intermediate point (Law et al., 2019).

Furthermore, to obtain the pre-trained weights of the pa-
rameters handling images, we have trained a Fusable Image
Model consisting of multiple DenseNet-121 networks and
an affine layer. The outputs of those networks are concate-
nated and passed to all the post-fusion feed-forward blocks.
The parameters expected from the tabular part of the model
are replaced with a padding of zeros.

All the pre-trained parameters related to images, including
400 rows of the first post-fusion linear transform, have been
copied into the final Fusion Model, and the tabular param-
eters have been copied from the Fusable Tabular Model.
The use of transfer learning is inspired by Bency et al.
(2017) who have shown model performance improvement
for the task of property value estimation with multi-modal
attributes.

We have experimented with encompassing dense connec-
tions for the feed-forward blocks similar to how it was done
in the original paper (Jiang et al., 2022). Unfortunately,
those experiments proved unfruitful, as we were unable to
find a satisfactory balance between regularization and net-

work capacity, leading to excess underfitting or overfitting
in every experiment. Table 3 shows the best densely con-
nected network (Densely Connected) aided by a substantial
amount of regularization and one without any regularization
and no-dense connections (Not Densely Connected*). Even
though DenseNet achieved a better validation R? result, it
was unsatisfactory given the amount of regularization re-
quired to reach this point. On the other hand, dropping the
dense connections allowed the model to get very close in
terms of validation R? whilst not requiring regularization
of any kind, pointing to the fact that this model has much
more potential.

Learning rate, dropout and L2 regularization hyperparame-
ter tuning for the Fusion Model were performed by incre-
mentally adjusting the values based on the previous sweep
outcomes to maximise the best validation R?> metric after
200 epochs, resulting in a choice of 107, 5 x 1072 and
2.5 x 1072, respectively. We have included a selection of
the results from the hyperparameter tuning in Table 3. The
optimizer for this model is ADAM (Kingma & Ba, 2017).

4.3. Objective function

We propose a novel geo-temporally normalised objective
function, to compensate for the high price variation in prop-
erty value estimation. This subsection explains the rationale
for its necessity, examines earlier uses of normalisation
functions in the literature on property price estimation, and
explains the intricacies of the proposed objective function

4.3.1. RATIONALE FOR GEO-TEMPORAL NORMALISATION

The analysis of the Latvian housing market has highlighted
an extreme variety of properties in various towns. More
specifically, the property price distribution is skewed to-
wards central Latvian towns, where the properties are sig-
nificantly more expensive than the rest of the country (see
Figure 3). Additionally, as the property prices have been
collected over a vast time range, they exhibit a high discrep-
ancy where the average property price in the country has
risen significantly over the years (see Figure 4). These ob-
servations highlight the need for property price adjustments
that account for the variance in the location and purchase
time when developing a nation-level real estate evaluation
model.

4.3.2. RATIONALE FOR PRICE NORMALISATION

By using typical optimization functions, such as MSE, on
high variance target prices, the model will prioritise the
modelling of expensive properties over moderately priced
ones, as the errors of such targets will have a greater influ-
ence on model parameters. This introduces an inherent bias
where more expensive property prices will be estimated
more accurately than low-cost real estate. Such inaccuracy
presents negative implications and the necessity to revert
to manual property valuation. However, manual real estate
appraisal fees do not directly scale with the value of the
property. Hence, the cost of the inspection is more pro-
nounced at the more affordable end of the property market.



One could mitigate this issue by having an automatic prop-
erty valuation tool capable of accurately assessing the price
of moderately and highly-priced properties, with equal im-
portance assigned to both categories.

Such observations imply the need to shift the emphasis
away from modelling the high-end real estate market to
make it more applicable for properties of the whole price
spectrum.

A substantial amount of prior research in property value
prediction has identified this issue, and to dampen its effects
a logarithm formula has been devised to reduce the prices
on the higher-end extremum (Law et al., 2019; Chen et al.,
2022; Azizi & Rudnytskyi, 2022; Bin et al., 2019). To
normalise a price (p;) of sale i under this scheme one can
use the Equation 1 to derive the normalised price (y;):

yi = In(py) ey

The inverse of this function (Equation 2) can be used to

convert the output of the model (3;) to the value prediction
(Do) S
pi=2" 2

This adjusted price (9;) can then be used in the standard
mean squared error loss function (Equation 3).

1 n
M. E:—E Di — yi)?
N Nizl(yl yi) (3)

4.3.3. GEo-TEMPORALLY NORMALISED OBJECTIVE FUNCTION

Average property price
per m2 by town

Figure 3. Thematic map of average apartment prices per m” in
towns of Latvia from 1998 to 2023.
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Figure 4. Average apartment price per m? in Latvia from 1998 to
2023

We propose an objective function with the intent to remove
the inherent bias and provide enhanced predictions for all
market tiers, including those categorized as budget-friendly,
moderate, and high-end. Additionally, the proposed ob-
jective function abstracts away from the location of the

property and the time when the sale took place. This in-
creases the network’s robustness against unseen regions or
future changes in the market, as it restrains from modelling
the overall trend of the market.

To normalise a price (p;) of the property i under our scheme,
we first calculate the average price per m? (a’,) in town m
at year ¢. Equation 4 illustrates the calculation of a/,, where
S is the set of all sales within town m that occurred in year
t and f; is the floor area of a property in m?:

p_ 1 Pi
“’"‘|S£,,|Zﬁ @

ieSt,

Further, we perform normalisation of the property price
by dividing it by f; and a/,. Equation 5 expresses the nor-
malised price (y;) of a property.

Pi

yi = NormalisedPrice(p;, f;,d.,) = Txd

&)

This normalised price scheme is inserted in the mean
squared error optimization Equation (3).

Equation 6 illustrates how to retrieve the original property
price, given the normalised property price:

pi = NormalisedPrice’ (3, fi,al,) = 9: X fixd,,  (6)

We intend to compare our proposed normalization scheme
against the logarithm of the price normalisation scheme,
due to the matching rationale for using each of them and
its prevalence in the literature.

4.4. Evaluation Metrics

To assess the effectiveness of the models in the task of
property appraisal, we evaluate our models using mean
squared error (MSE), mean absolute error (MAE) and the
coefficient of determination (R?).

MSE (Equation 3) effectively signals the frequency of
significant errors, accentuated by the squaring operation,
which magnifies the impact of large and infrequent errors.
Moreover, it allows clear monitoring of the progress of
optimization and allows for early stopping to prevent over-
fitting.

MAE (Equation 7) enables comparative analysis with the
value of MSE. It is insensitive to infrequent large errors but
provides a meaningful metric that is simple to interpret and
can be simply related to real-world average estimation error.

] n
MAE = — A,'— i 7
N;w yil )

12

R? (Equation 8) describes the squared distance of the pre-
diction from the actual values, adjusted by the variance in
the actual values. The coefficient of determination can be
interpreted as measuring the model’s goodness of fit to the
true values.

Z?:](j\)i - yi)2

R = 2mi T
i = 9)?

®



5. Experiments
5.1. Augmenting the Baseline

We first assess the performance of the skinny and augmented
baseline models proposed by Azizi & Rudnytskyi (2022)
and Law et al. (2019). We are interested in assessing what
performance the baseline models achieve by just using the
features (or their proxies) included in the original paper
(skinny baseline) and their performance when all of the
features from the Latvian dataset are provided (augmented
baseline).

The hyperparameter settings for each of the baselines used
in the experiments were the same as those described in the
original papers. Azizi & Rudnytskyi (2022) used learn-
ing rate = 1.5 x 1073, dropout = 0.1 and the AdaMAX
optimizer (Kingma & Ba, 2017). Law et al. (2019) used
learning rate = 10~*, but no dropout with ADAM optimizer
(Kingma & Ba, 2017). Neither of the studies mentioned L2
regularization.

The results show that the augmented baselines (Table 4 in-
dices 2, 5) performed much better on the test set compared
to the skinny baselines (Table 4 indices 1, 4). The aug-
mented baselines achieved a 15 and 36 percentage points
greater MSE for Azizi & Rudnytskyi (2022) and Law et al.
(2019) networks when evaluated on the random city test
set. When assessing the models’ performance on the un-
seen town test set, Law et al.’s (2019) model improved by a
small margin, whilst Azizi & Rudnytskyi (2022) became
significantly worse (20 percentage points greater MSE).
This can be partly explained by the effect of integrating POI
and transport maps, which are described more in detail in
Section 5.3.

It can be concluded that the increase in input feature set
size increased the model’s ability to generate predictions of
greater quality. It has to be noted that some of the results
of the R? were adjusted (denoted with a **”) due to model
outputs yielding infinities as a result of logarithm price
exponentiation. In those cases, the prediction was replaced
with a prediction of 1, which is favourable for the model.

In conclusion, the inclusion of all available features from
our dataset was beneficial to the baseline models. There-
fore, all further experiments will be performed on the ‘aug-
mented’ set of features to ensure consistency between mod-
els and maximise the performance of each model type.

5.2. Geo-temporal objective function on the Baseline

Further experiments investigate the effect of the proposed
geo-temporal objective function introduced in Section 4.3.3.
To test the effectiveness of this objective function, we have
trained and compared both baseline models when modelling
the logarithm of price (Table 4, indices 2 and 5) and mod-
elling the geo-temporally normalised price (Table 4, indices
3 and 6) using MSE. We reuse the same hyperparameter
settings from the previous experiment (see Section 5.1).

The outcomes of the experimentation exhibit the benefits of
the geo-temporal objective function as they have allowed

previously underperforming models to fit the diverse and
difficult dataset of the task given. For both baselines, the
use of geo-temporally normalised prices has reduced the
MSE loss threefold on the random property test set and
fourfold on the unseen town test set compared to the log
price modelling. This is consistent with our expectations,
especially when it comes to the unseen town test set per-
formance, as the model was capable of performing well by
obtaining R? of over 65% while being unaware of the mar-
ket dynamics. Interestingly, the geo-temporally normalised
price was better at modelling the sample in the unseen town
test set than the random town test set by a margin of 3
and 10 percentage points in the case of Azizi & Rudnyt-
skyi (2022) and Law et al. (2019) respectively. This can
explained by the fact that the samples in the unseen town
test are on average cheaper than the samples in the random
test set. Therefore this discrepancy is consistent with our
expectation of the geo-temporarily normalised price, which
puts greater emphasis on cheaper properties.

Random Test Set
A Features Obj. [ MSE | MAE R?
| 1] Ts + Sgo LP 0.8077 | 0.7518 | -0.1997
21 ALL 0.6575 | 0.6739 | -0.2012
| 3] ALL GT | 0.2669 | 0.4051 | 0.6245
| 4] Ts + S30 + POI Lp 1.0062 | 0.7826 | -0.7892
512 ALL 0.6422 | 0.5976 | -0.1651*
6 | ALL GT | 0.2694 | 0.4084 | 0.5607
Unseen Town Test Set
A Features Obj. | MSE | MAE R?
| 1] Ts + Sgo Lp 1.4833 | 1.0114 | -0.3860
2|1 ALL 1.7025 | 1.1148 | -0.4635
3] ALL GT | 0.2583 | 0.4074 | 0.6550
| 4] Ts + S300 + POI Lp 1.0042 | 0.8012 | -0.7268
512 ALL 0.9651 | 0.8118 | 0.0136*
6 | ALL GT | 0.2276 | 0.3789 | 0.6645

Table 4. Test performance of Azizi & Rudnytskyi (2022) (Author
1) and Law et al. (2019) (Author 2) baseline models, assessed
by mean squared error (MSE), mean absolute error (MAE) and
R? score. For feature abbreviations, refer to Tables 1 and 2. LP
stands for logarithm price, whereas GT stands for geo-temporal
normalised price. ALL = T + Sgg + S3p0 + POl + TM

5.3. Benefits of including POI and transport map data

This section discusses the effects of POI and transport maps
being included as input features to perform real estate ap-
praisal. To assess the effects of additional feature inte-
gration, we train the Fusable Image Model introduced in
Section 4.2. We analyse two versions of this model - one
trained with 2 satellite images (Sgo, S300) and the other
trained with 2 satellite images, POI and transport map
(Ss0, S300, POIL, TM). For the models’ results refer to Table
5, indices 2 and 3.

The experiments have yielded interesting contradictory re-
sults. There was a minor improvement of 1.3% in terms of
the random test set RZ, whilst there was a minor decrease
of 1.7% in performance in terms of unseen town test R
metric. We explain the performance decrease on the unseen
town test set with the lack of information in the respec-



tive POI and transport maps, as the investigated cities lack
many amenities and transportation links that other cities
in the random dataset possess. This inherently limits the
model’s ability to extract valid information about those
places, leading to decreased performance.

We are unable to draw any concrete conclusion on the
benefits of including POI and transport map data in the
model. However, based on the slightly biased nature of or
unseen town test set, we decided to include this data in the
final model of this study, based purely on the increase in
performance in terms of the less biased random test set.

Random Test Set

Features MSE | MAE R?
1 T 0.2040 | 0.3285 | 0.7190
2 Sgo + S300 0.2636 | 0.3917 | 0.6442
3 Sgo + Sz00 + POl + TM 0.2590 | 0.3933 | 0.6530
4 | T+Sgg + S3090 + POl + TM | 0.2220 | 0.3519 | 0.6933

Unseen Town Test Set

Features MSE | MAE R?
1 T 0.2115 | 0.3563 | 0.7181
2 Sso + S300 0.2452 | 0.3900 | 0.6214
3 Sso + S300 + POI + TM 0.2664 | 0.4036 | 0.6107
4 | T+Sgg + S3090 + POI+ TM | 0.2099 | 0.3564 | 0.7287

Table 5. Test performance of the proposed model, assessed by
mean squared error (MSE), mean absolute error (MAE) and R?
score. For feature abbreviations, refer to Tables 1 and 2.

5.4. Multimodal model with geo-temporal objective

Finally, we assess the performance of the deep multi-modal
architecture introduced in Section 4.2, on the task of min-
imising MSE loss on the geo-temporal objective.

The training of the deep multi-modal network involved
a pre-training step of the Fusable Tabular Model (Table
5, index 1) and Fusable Image Model (Table 5, index 3).
After, the weights of those models were transferred to the
new model in the manner exhibited in Figure 2. After
the weight transfer, the model was trained for 15 epochs
and early stopped at epoch 13 when it achieved the highest
validation loss. The hyperparameter choice for the proposed
architecture was outlined in 4.2.

The proposed model has significantly outperformed all
other approaches in terms of the unseen town test, by
achieving R? of 0.7287, whilst even the best baseline using
geo-temporally normalised price had achieved 0.6645. In
terms of the random test set the Fusion Model achieved R?
of 0.6933, whilst the best baseline only achieved 0.6245.
Interestingly, the Fusable Tabular Model was able to out-
perform the Fusion Model when tested on a random test set
by 3.7%.

Based on the fact that the random test set performance of
the Fusion Model is still very good (0.6933 R?), whilst
performing much better on the unseen town set (0.7287 R?),
we hypothesise that this model is likely to generalize better
than Fusable Tabular Model. Nevertheless, we argue that
Fusable Tabular Model is a great choice for the case with

limited computation resources or no access to image data.
6. Future work and limitations

To assess the proposed model’s ability to generalise across
different property markets, we could evaluate its perfor-
mance on property markets of the neighbouring countries.
Additionally, when tackling those markets, the presented
model could be used as a pre-training step to a model that
is fine-tuned to the specific country market. Additionally,
due to their prevalence in real estate appraisal literature,
classical machine learning approaches could be employed
in conjunction with the proposed model, where the neural
model is used as a feature extractor.

The dataset acquired for this task is not of the highest qual-
ity, as many unlikely values were observed and tax fraud is
suspected to have occurred. Therefore, additional work in
dataset cleaning and validity checking is required. A cor-
rect and consistent dataset is likely to lead to large model
performance improvement. Lastly, the temporal aspect of
the proposed objective function has not been evaluated to
a satisfactory degree. Therefore a separate test set “unseen
year(s)’, would evaluate the models’ ability to generalise
over different time periods.

7. Conclusions

In this paper, we have tackled deep-learning-based apart-
ment value prediction using multi-modal attributes. As
the majority of the real estate appraisal literature has pre-
viously focused on using relatively shallow architectures,
we introduce a deeper network, encompassing DenseNet
(Huang et al., 2017) CNN architecture, transfer learning
techniques and increased added L2 and batch normalisation
regularisation methods. Our proposed model achieves a
0.7287 R? score on the unseen town test set, outperforming
baseline models from the deep neural network multi-modal
real estate appraisal literature (Azizi & Rudnytskyi, 2022;
Law et al., 2019) by 0.1042 and 0.1680, respectively.

Additionally, we devised a novel geo-temporal normalisa-
tion scheme that abstracts away from the location and time
of sale of the property, creating a general model that ab-
stains from modelling the market dynamics. The viability
of the scheme was assessed by comparing the model per-
formance with the logarithm normalisation scheme on the
baseline models. Both Azizi & Rudnytskyi (2022) and Law
et al. (2019) baseline models demonstrated a significant
performance improvement when using our geo-temporally
normalised objective function.

Lastly, we analysed the benefits of using point-of-interest
maps and transport maps as additional input to multi-modal
property appraisal models. This analysis has shown mixed
results, disallowing us to concretely conclude about their
importance.

All models were trained and evaluated on a new dataset,
based on a publicly available real estate market database cre-
ated by the State Land Service of Latvia and self-collected
satellite and map imagery.
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