

Natural Computing Coursework
Patryk Kuchta – s2595201 – B248125

University of Edinburgh

Natural Computing – Coursework – B248125 1

Problem 1 – preliminary steps

In this section, I will cover the use of the Particle Swarm Optimisation (PSO) algorithm for

minimising the Rastrigin function in d-dimensions, where all dimensions are constrained to

values within -5.12 to 5.12.

It is important to note that an inspection of this function on a graph quickly reveals that this

function can easily 'trap' any algorithm into a local optimum. Therefore, the expectations for

the performance of the algorithm cannot be too high in this case.

Fitness Function

To solve this problem using the PSO algorithm, a suitable fitness function had to be selected.

The output of this fitness function is the value of the Rastrigin function for that solution, with

the added penalties, which are the summed squared difference between the search space

boundary and the value for each dimension that has left the search boundary. This penalty is

introduced to discourage the algorithm from leaving the search space. Penalties will always

equal 0 if all dimensions are within the search space. This number is multiplied by -1

because the algorithm I have written is aimed at maximising fitness. The code for this

function has been included in the Appendix.

Acceptable solutions.

Acceptable solutions have been selected based on running the PSO algorithm for the same

problem but with a generous population of 100, 300 iterations, and this algorithm has been

run 10 times to select the best output of all 10 of the tests.

Using this methodology, the best optimum found for 5 dimensions had the fitness of negative

3.2336 therefore the fitness that is required for the solution to be deemed as good enough will

be -9.7008, as this will be 3 times the best solution found, and this allows the testing to

observe and reward 'quite good' solutions not just the best possible.

Parameter selection

My methodology for finding the parameters will be for each population size test (starting

from 1) to run the model and record the number of iterations before reaching an acceptable

solution, until reaching the population of 60. Please note that for most tests the behaviour for

small populations is quite random and luck-based, due to the behaviour of the PSO algorithm

in those cases.

Because there is a high chance that PSO will be unable to find an optimum (especially for

small populations), the algorithm is run 100 times, and if it can find a good enough optimum,

its number of iterations will be taken into the overall average. Otherwise, the failure to find

the optimum will be recorded in the success rate.

The search for a set of optimum parameters has been started by researching the effects of

different parameters in terms of particle behaviour and divergence, assuming no prior

knowledge of the problem the behaviour of both zigzagging and oscillating could be useful to

the problem. To achieve this behaviour, the values of inertia will be kept close to 1, whilst the

sum of the forces kept equal to 4. Running the algorithm for a set of very generic parameters

(inertia = 0.7, both forces = 2), quickly revealed that the algorithm makes rather slow

progress, the global best would be stuck on the current perceived global best for a while.

Natural Computing – Coursework – B248125 2

Alpha values

This points to the issue that in this problem there is a need to de-emphasize exploitation and

focus more on exploration. This pointed first to increasing the personal best force, whilst

sacrificing the global best. The findings of these tests can be seen in Figures 1 and 2.

Figure 1: Average Iterations required for finding an optimal solution, for different population sizes,

given different values for the personal and global best forces. The figure on the left includes the entry

for personal = 2; and global = 2; whilst the figure on the right shows the other 3 entries in more detail.

These tests show that increasing the importance of the personal_best has led to large

improvements in the algorithm, but they are coming at the expense of the success rate. Based

on these findings, all considerations going forward will use the personal_best_force = 3.5 and

global_best_force = 0.5, as these values give a good balance between relatively reliably

getting an answer and optimising the number of iterations.

0

5

10

15

20

25

P
o
p

u
la

ti
o

n 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

Average Interations Required

personal = 3; global = 1

personal = 3.5; global = 0.5

personal = 3.75; global = 0.25

0

20

40

60

80

100

120

140

160

180

P
o
p

u
la

ti
o

n 4 7
1

0
1

3
1

6
1

9
2

2
2

5
2

8
3

1
3

4
3

7
4

0
4

3
4

6
4

9
5

2
5

5
5

8

Average Interations Required

personal = 2; global = 2

personal = 3; global = 1

personal = 3.5; global = 0.5

personal = 3.75; global = 0.25

Natural Computing – Coursework – B248125 3

Figure 2: The percentage of successful runs of the algorithm over different population sizes, and

different values for the personal and global best forces. A success rate of 100 means the algorithm has

found an acceptable solution every time, whilst 0 indicates that the algorithm has never reached an

acceptable solution.

Inertia

Similar tests have been performed for different inertia; the findings are shown in Figure 3.

Figure 3: The average iterations and success rate in reaching an optimal solution for different

population sizes given different inertia values.

In the case of inertia, there is no more clear benefit in changing the value as any improvement

in the success rate comes at the expense of the average required number of iterations. The

inertia of 0.85 will be used as it has shown good performance in terms of average iterations

required and did not cause the success rate to go too low like in the case of inertia = 0.7.

0

20

40

60

80

100

Success Rate

personal = 2; global = 2 personal = 3; global = 1

personal = 3.5; global = 0.5 personal = 3.75; global = 0.25

0

5

10

15

20

25

30

35

40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Average Interations Required

inertia = 0.7 inertia = 0.8

inertia = 0.85 inertia = 0.9

0

20

40

60

80

100

1 4 7 1013161922252831343740434649525558

Success Rate

inertia = 0.7 inertia = 0.8

inertia = 0.85 inertia = 0.9

Natural Computing – Coursework – B248125 4

Problem 1 – Subtask a)

Modified test set-up

These tests will be run slightly differently as it will be preferable to produce one metric for

each population size rather than a more nuanced two values in the tests for the parameters. In

these tests, each test of a given population size (still searched between 1 and 100), will be

given an equal budget for the maximum number of evaluations of the fitness it can perform.

Additionally, the model will only be restarted if the progress in the algorithm stops

improving* without reaching an acceptable optimum or as soon as the acceptable optimum is

reached. The metric for the comparison will be how many times the model was able to reach

the acceptable optimum within its evaluation budget. This metric will neatly combine

computational cost and the costs associated with not converging with the perceived

performance. The budget has been set to 1,000,000 as this is the largest number feasible with

my limited computational power.

Small note about going over budget, for simplicity going over budget within an iteration of

the algorithm is allowed, but the algorithm will be stopped right after. Although it does

introduce a small advantage for bigger populations, it should not be significant to the testing.

The asterisk* next to stop improving is because it is difficult to determine when a model is

not making progress. Therefore, for these tests 'stops improving' will be approximated as the

model has not made any improvements to the fitness in more than 25 iterations.

Findings

For the Rastrigin problem represented in five dimensions, the result of the tests is shown in

Figure 4.

Figure 4: Number of times the PSO algorithm was able to find an optimal solution given a limited

number of fitness evaluations.

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

Population

Number of successes within the budget

Natural Computing – Coursework – B248125 5

These findings suggest that values between 10 and 34 can be considered optimal. The

data produced is quite noisy, and drawing a single point as the optimal would be ill-

judged. If tasked with choosing only one value, the choice of value 20, which is where

the maximum performance has been reached, would be a sensible value. However, it

would be hard to concretely prove that it is better than any other values from 10 to 34.

Natural Computing – Coursework – B248125 6

Problem 1 – Subtask b)

To answer this task, I will examine what are the optimal values for the following problem

complexities (numbers of dimensions of the solution): 3, 4, 5, 6 and 7.

Based on a run of the PSO algorithm with generous computational power (just like in task a),

the fitness of the best solution and the smallest acceptable fitness value are shown in Table 1.

Number of Dimensions Best Fitness Found Worst Fitness Acceptable

3 -0.7462 -2.2387

4 -0.9949 -2.9849

5 -3.2336 -9.7008

6 -3.4824 -10.4471

7 -5.7210 -17.1630

Table 1: The values of the best fitness found, and the worst fitness deemed as acceptable for each of

the tested number of dimensions.

Please note that as the method for selecting the value is not perfect, it cannot be assumed that

thresholds are all representing a proportional or equivalent difficulty for the program. It may

even be argued that the selection method for these values could be a bit more lenient for the

higher dimensionality problems.

Testing

The tests performed for this section are the same as for the previous task. The findings are

shown in Figure 5.

Figure 5: Number of times the PSO algorithm was able to find an optimal solution given a

limited number of fitness evaluations, for each of the numbers of dimensions of the given problem.

0

50

100

150

200

250

300

350

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Population

dims = 3 dims = 4 dims = 5 dims = 6 dims = 7

Natural Computing – Coursework – B248125 7

For all dimensions, except for the dimensionality of three, it is visible that the set of optimal

population sizes stays relatively stable at around populations between 10 and 30. This is

because the dynamics of the group, which rely on each of the particles to be drawn to 2

previous optima’s, will over time make the particles become very similar if the set of

particles is large enough. Therefore, we can observe the slow decrease in the metric as we

raise the population as each new particle has a higher chance of not contributing by virtue of

becoming too similar to other particles. This means at one point each new particle becomes

less of a benefit and more of a computational burden. This behaviour is kept with the number

of dimensions rising because the impact of the group dynamics and the force does not

increase nor decrease concerning the number of dimensions.

The exception is 3 dimensions, where I believe the added computation burden of a growing

population was offset by purely increasing the chances of landing on a solution by luck rather

than by utilising group dynamics, which makes sense given the whole search space is

(10.24)^3, which makes getting a lucky solution quite a frequent occurrence. However, it’s

worth noting that even in those peculiar circumstances, the choice of a population from the

set 10–30 would still yield good performance in comparison to the rest of the options.

Therefore, the conclusion, is that for this problem the optimal population size stays

relatively stable as the number of dimensions of the problem grows. This is because

population size has the largest impact on the group dynamics, which operate similarly

for different dimensions of the problem.

Natural Computing – Coursework – B248125 8

Question 2 – preliminary steps

Encoding

Encoding will be achieved using a k^2 binary vector where each scalar denotes whether a

given value in the games' matrix should be deleted or not (deletion = 0, retention = 1), and

ought to be read as:

𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑂𝑓(𝑥, 𝑦) = 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔𝑉𝑒𝑐𝑡𝑜𝑟(𝑘𝑦 + 𝑥)

This makes the mutations simple, as they could simply be based on bit flipping, and the

fitness evaluation is also quite computationally simple, which is great as this operation will

be performed often.

Parameter selection

For this problem, the ranges for possible parameters have been constrained into the following

ranges:

• population_size from 100 to 400, with step 10 (i.e. 100, 110, 120..., 390, 400)

• mutation_rate from 0.1 to 0.9, with step 0.1 (i.e. 0.1, 0.2, 0.3..., 0.8, 0.9)

• crossover_rate from 0.1 to 0.9, with step 0.1 (i.e. 0.1, 0.2, 0.3..., 0.8, 0.9)

For each pair of parameters, the genetic algorithm will be run for several iterations, until

exhausting the given budget of evaluations, restarting after finding a correct solution or when

the number of iterations goes above 20. The final performance metric will be the number of

times that the genetic algorithm has reached the correct solution.

This is quite constraining, but it should be able to produce at least meaningful information

pointing to better parameters or in the best cases, a good set of parameters.

Mutation Scheme

The mutation scheme has been kept quite simple as it will randomly select a value from the

encoding vector and flip it (0 will become 1’s, and vice versa).

Selection Scheme

The selection scheme used in this algorithm will be the ‘Roulette Wheel Selection’ where the

chance of survival for each genome is based on its relative fitness which can be expressed as:

𝑆𝑢𝑟𝑣𝑖𝑎𝑙𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥′)

Based on that probability distribution, the new population is built with each of the slots being

allocated randomly based on that probability distribution. This selection scheme has been

selected as it still gives a chance for the less-fit solutions to make it into the next generation.

Helps the population remain diverse. The algorithm written for this functionality also

includes the optional `elitism` parameter which can be set to tell the function to keep a few

best solutions by default. Elitism has been kept at 0 for all these experiments as this

encourages diversity which is highly needed for this problem.

Crossover Scheme

The crossover scheme is based on slicing one of the solution vectors and inserting that ‘slice’

into the same part of the vector inside the other vector. The placing of where the slicing

begins and ends is selected randomly.

Natural Computing – Coursework – B248125 9

Problem 2 – Question a)

Firstly, selecting the parameters for this problem will be useful. To select the parameters, the

3 x 3 version of the problem will be used so that the computations are a bit faster. The First

observation is that given a budget of 100,000 evaluations, the algorithm was still struggling to

find the solutions for many parameters. Table 2 shows the top 40 best-performing parameters

tuples.

population mutation crossover successes

370 0.2 0.9 29

330 0.1 0.9 27

330 0.2 0.9 27

330 0.3 0.9 27

370 0.4 0.9 27

380 0.1 0.9 25

340 0.2 0.9 23

370 0.3 0.8 23

340 0.1 0.9 22

390 0.1 0.9 22

340 0.1 0.8 21

340 0.3 0.8 21

380 0.2 0.9 20

400 0.1 0.9 20

330 0.5 0.9 19

340 0.3 0.6 19

350 0.5 0.9 19

370 0.1 0.7 19

400 0.2 0.8 19

370 0.2 0.7 18

340 0.3 0.7 17

350 0.6 0.9 17

350 0.7 0.9 17

360 0.1 0.8 17

380 0.1 0.7 17

400 0.6 0.9 17

340 0.1 0.5 16

350 0.8 0.9 16

370 0.7 0.9 16

Table 2: Top 30 parameters tuples with the number of successful runs shown for each of them.

Natural Computing – Coursework – B248125 10

Table 2 shows that there are a lot of variances in the mutation_rate for tuples that still

performed well. This points to the fact that in the current state, the algorithm doesn't get

much of a benefit from mutations. One thing that is quite consistent is that the larger

population sizes have performed better and that the algorithm performs better for larger

crossover rates.

But this testing done to produce an optimal tuple of parameters shows the issues with

this fitness function in general, which is that the genetic algorithm has no way of

knowing which solutions are better if they aren't the correct solution (if one of them is,

then the algorithm is done regardless). This makes it so that a larger population size,

which necessitates more random initialisations, is better as the algorithm is reduced in

its functionality to just a random search. Mutations even if they happen often are not

useful as it is better to just create a new random solution, rather than mutate an existing

one if the only thing we know about it is that it is incorrect. The tendency to favour high

crossover rates can be explained as it introduces a lot of new random solutions and

when used with a value close to one it will happen for all the genomes, which helps the

algorithm, as it makes the current random search even more random.

In Table 3 are the findings for multiple dimensionalities of the problem (using parameters

population: 350, mutation_rate: 0.5, crossover_rate: 0.9, and 100 generations, 100 times

(each time with a new model (i.e. resetting)). The number represents the number of times the

model has reached the correct solution.

Matrix size Successes per 100 trials

2 by 2 100

3 by 3 100

4 by 4 36

5 by 5 0

6 by 6 0

Table 3: Number of successes per 100 trials for different matrix sizes, when running the genetic

algorithm with a flawed fitness function.

This shows that as the dimensionality of the problem grows this fitness function

becomes more of an issue as random search becomes less and less feasible as we increase

the problem's complexity.

Natural Computing – Coursework – B248125 11

Problem 2 – Subtask b)

Proposed fitness function

A fitness function better suited for larger instances of the problem will be a fitness function:

• that will tell the model when it is getting closer to the correct sums.

• that will reward getting the correct sum in each dimension.

This will allow it to select solutions that are in theory closer to the correct answer for future

generations. The fitness is defined as the negative sum of square differences between the

correct sums and the sums that the given solution gives, plus a +4 reward for each sum that

the solution gets correctly. The code for this function has been included in the Appendix.

Parameter selection

To choose the parameters, the analysis was the same as in the previous subtask. However,

after a quick test, this fitness function has proven that the number of allowed iterations before

the default restarting should be raised to 200 because, with this fitness function, the algorithm

can make progress for longer.

The best performance has been reached for population_size 150, mutation rate 0.1, and

crossover_rate 0.9, and many of the best parameter tuples its mutation_rate was between 0.1 -

0.3 and the crossover_rate 0.7–0.9, and the population_size within 120 to 190. Therefore, to

limit the effect of noise which might have been the reason for the best tuple, the final

parameters chosen will be:

• population_size = 150

• mutation_rate = 0.2

• crossover_rate = 0.8

It’s worth noting that this population size means that this algorithm is significantly less

computationally costly than the previously tested algorithm. The findings are shown in Table

4.

Matrix size Successes per 100 trials

2 by 2 91

3 by 3 92

4 by 4 89

5 by 5 33

6 by 6 18

Table 4: Number of successes per 100 trials for different matrix sizes, when running the genetic

algorithm with a better fitness function.

This fitness function scales much better with the growth of the matrix and was able to find

solutions in cases of 5 by 5 and 6 by 6 whereas the previous fitness function did not yield any

solutions for these dimensions. It is worth noting that if higher reliability would be desired

then this could be done by increasing the diversity and population size, by for example using

a population of 200.

Natural Computing – Coursework – B248125 12

Problem 2 – Subtask c)

Different parameter pairs affect the solution. The crossover rate will tend to create more

solutions that are combinations of deletions of small values that iteratively get closer to the

correct solution. One could consider these solutions as 'not optimal' as they will have more

deletions than other solutions (this is assuming that there is more than one solution which is

not always the case for a given game). Population size and mutation rate will tend to create

more random solutions and the solutions it finds will be just as likely to be the ‘optimal’

solutions, with few deletions and the ‘not optimal’ solutions. It’s worth noting that with the

proposed fitness function increasing the mutation rate may lower the performance as the

algorithm has shown it can exploit crossover well for combining solutions, but those

solutions may become corrupted by the mutations.

Natural Computing – Coursework – B248125 13

Problem 3 – Subtask a)

Input

As this function is trying to learn the relationship of values in a sequence and describe it

using a mathematical function, it will be given a window of the last n-values proceeding to

the value it is attempting to estimate. The size of that window should be selected in a way

that will not suggest a solution. For instance, using a window of 2 for Fibonacci’s sequence

gives the algorithm a big advantage that it would not have if we genuinely did not know the

formulae for Fibonacci’s number.

Choice of sequence

The sequence chosen for this problem is the Pell’s sequence. Each element in Pell’s sequence

can be expressed as:

𝑥1 = 1, 𝑥2 = 0

𝑥𝑛 = 2 ∗ 𝑥𝑛−1 + 𝑥𝑛−2, 𝑤ℎ𝑒𝑟𝑒 𝑥 ≥ 3

Therefore, each value in this sequence relies on the previous two numbers. The algorithm will

be tested using the window of 3, which will introduce a redundant variable so that the search

is harder for the program. The maximum depth of a start tree has been set to 5.

Selection Scheme

The selection scheme for this problem has been kept from the previous exercise. Please refer

to Question 2 – Preliminary steps, Selection Scheme for more details.

Mutation and Initialization Scheme

The mutation and initialization scheme is based on random growth in a random part of the

tree, whilst discarding the previous structure present at that node. The function used for this

will for at each Node will create a random structure, limiting itself to the wanted_depth

parameter. If the wanted_depth is equal to 1 then just the value stored will be set to one of the

terminal values, either ‘constant-X’ or ‘input-X’ with equal probabilities. If there is still depth

left, the algorithm with a probability of 0.3, will still terminate a terminal value. Otherwise, a

function will be created ‘function-‘ with one of the function labels available. The left and

right nodes will be created and the `grow_randomly` algorithm will be called upon them with

depth adjusted down by one.

This algorithm is run for a random node of the tree when mutating. The selection of the node

is done by recursively trying to mutate with probability set to mutation_probabilty, and

otherwise running the mutation algorithm for both children of the current node. The code for

the ‘grow_randomly’ and ‘mutate’ functions has been included in the Appendix.

For the initialization, a simple node is initialized and then the ‘grow_randomly’ is called.

Crossover Scheme:

To perform crossover, a random index within the tree of each of the genomes omits the root

(this is because replacing at the root is not really crossover but rather just replacement and it

would be significantly more complicated algorithmically to implement). Based on the

selected index a part of the tree of the other genome gets copied and that copy is inserted into

the other tree at the index. The code for the crossover function along with its helper functions

has been included in the Appendix.

Natural Computing – Coursework – B248125 14

Fitness function:

To evaluate the fitness of each of the solutions firstly a method that computes the output of

the solution for each of the inputs had to be created. This was done using recursion and the

code for the calculation has been included in the Appendix.

With the outputs for each of the inputs, the fitness can be simply evaluated as the distance

between the outputs from the proposed solution and target outputs. The code for fitness

evaluation has been included in the Appendix.

This code allows for the adjustment of the exponent for the distance therefore, allowing the

user to choose between the Euclidean distance, Manhattan Distance or more.

The alphabet:

The alphabet for this exercise is composed of three components:

- functions allowed: Addition, Difference and Multiplication

- constants allowed: 1, 2, 3, 4, 5.

- input indexes allowed: determined on the window size, in this case 3 therefore:

input[n-1], input[n-2] and input[n-3].

The alphabet has been kept simple as this allows the program to produce the more complex

relations by itself if required, whilst favouring simpler programs. Additionally, this is

computationally stable as there is no division introduced into this problem. The omission of 0

in the constants is purposeful as it makes the program refrain from creating nodes such as 0 *

x, which contributes nothing to the problem.

Natural Computing – Coursework – B248125 15

Problem 3 – Subtask b)

Testing with these parameters was based around a grid search so that different parameters

could be compared, the search space was:

- 1, 11, 21, …, 51 for the population size

- 0.1, 0.2, 0.3, … 0.9 for the mutation rate

- 0.1, 0.2, 0.3, … 0.9 for the crossover rate

The algorithm will be reset and run each of these parameters 100 times. The metrics

measured are the average number of fitness evaluations for a successful run and the number

of successful runs. Success is defined as finding a function that will fit the data, which is the

same as the yielding fitness of 0. On the other hand, an unsuccessful run is a run that does not

solve within the first 300 generations. Importantly, given that the dataset has only 20 data

points is possible that the algorithm will find a solution that will not be the correct function

that fits all these points, but if we assume we don’t know the underlying formulae these

solutions would still be acceptable.

The testing has shown that a population of 1 is very unlikely to find a solution for this

problem, whilst a population of 11 for all parameter pairs has yielded above 40% success

ratio, and some parameters have been very reliable at finding the solution given that

population. Raising the population size has improved the success ratio further for all

parameter tuples. These findings can be seen in Figure 6. This is because at the population of

11, many of the populational dynamics were able to come into effect, and as the population

grew, it made the number of checked values larger making it even more plausible that the

solution would be found.

Figure 6: Number of successes per 100 trials for population sizes, each point represents a different

choice of the mutation_rate and crossover_rate parameters.

Those findings point towards the choice of a larger population, but an inspection of the

mean_evaluations metric given different population sizes, seen in Figure 7, reveals that the

algorithm becomes more computationally expensive as the population grows. This is to be

expected as with a larger population size the cost of each generation increases, whilst

regardless of the population size and the extent to which the group dynamics work, the

algorithm still needs generations to refine solutions. A larger population requires fewer

generations, but the decrease in the number of generations is not big enough to reduce the

0

20

40

60

80

100

120

0 10 20 30 40 50 60

su
cc

es
se

s

population

successes by population size

Natural Computing – Coursework – B248125 16

effect of the fact that each of the generations has become more computationally expensive,

leading to this relationship between growth in population size and the growth in

computational cost.

It is also worth noting that because 11 seems to achieve great performance, exploring the

values between 1 and 11 for the population size could be beneficial if this algorithm was used

for more computationally intense problems. In this case, even though 11 may not be the best

choice, the experiments will stick to it as given satisfactory performance. Based on that, it

makes sense to investigate the other parameter tuples that include the population size 11

closer.

The best 12 parameter tuples for population size 11 have been shown in Table 5, all have

mean-evaluation values at around 900, which means that around 80-90 generations are

needed to reliably find the solution.

Figure 7: Mean evaluations required to reach a solution for different population sizes, each point

represents a different choice of the mutation_rate and crossover_rate parameters.

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60

m
ea

n
_

ev
al

u
at

io
n
s

population

population and mean_evaluations appear highly correlated.

Natural Computing – Coursework – B248125 17

population mutation_rate crossover_rate mean_evaluations successes

11 0.2 0.9 833 99

11 0.3 0.7 836 99

11 0.3 0.9 855 98

11 0.4 0.8 855 97

11 0.4 0.9 857 100

11 0.4 0.6 883 98

11 0.5 0.8 885 93

11 0.3 0.8 901 98

11 0.5 0.4 931 86

11 0.4 0.4 933 95

11 0.2 0.7 934 99

11 0.4 0.7 947 97

Table 5: The best performing 12 tuples of parameters with their respective mean number of

evaluations required to reach a solution and the success rate in finding the solution.

Natural Computing – Coursework – B248125 18

Problem 3 – Subtask c)

Using the parameters that have been found to work well for Pell’s sequence, which are:

- Population size of 11

- Mutation_rate of 0.3

- Crossover_rate of 0.7

To evaluate the generalization of this approach several sequences were tested.

Fibonacci Sequence

𝑥1 = 1, 𝑥2 = 1

𝑥𝑛 = 𝑥𝑛−2 + 𝑥𝑛−1, 𝑤ℎ𝑒𝑟𝑒 𝑥 ≥ 3

The algorithm has been able to find the solution at all 100 out of 100 trials, with the average

number of evaluations required to find the solution being 303 (about 30 generations). This

shows that this algorithm can find a solution to other simpler sequences.

Perrin Sequence

𝑥1 = 3, 𝑥2 = 0, 𝑥3 = 2

𝑥𝑛 = 𝑥𝑛−3 + 𝑥𝑛−2, 𝑤ℎ𝑒𝑟𝑒 𝑥 ≥ 4

The algorithm has been able to find the solution at all 99 out of 100 trials, with the average

number of evaluations required to find the solution being 385 (about 38 generations). This

shows that this algorithm can find a solution to other sequences.

Sylvester Sequence

𝑥1 = 2

𝑥𝑛 = 𝑥𝑛−1
2 + 𝑥𝑛−1 + 1, 𝑤ℎ𝑒𝑟𝑒 𝑥 ≥ 2

It is important to note that because the number in the sequence gets very large and tends to

cause overflow issues in this problem, the size of the sequence given for the algorithm to

calculate fitness had to be severely reduced from 20 to 7. The algorithm has been able to find

the solution at all 7 out of 100 trials, with the average number of evaluations required to find

the solution being 669 (about 65 generations). This shows that this algorithm does struggle to

find solutions when the data is scarce.

Generalization beyond these sequences

Currently, the alphabet constrains the number of possible formulas that can be expressed by

the program. Expanding the alphabet will make the program perform slower, but the

algorithm should still be able to find solutions. This would need to be done if making this a

more general algorithm would be desired. Below are a few suggestions for functions that can

be added:

Nth_abs_root function could added to the alphabet. This function can be expressed as:

𝑁𝑡ℎ𝐴𝑏𝑠𝑅𝑜𝑜𝑡(𝑎, 𝑏) = √|𝑎|
|𝑏|

, 𝑤ℎ𝑒𝑛 𝑏 ≠ 0

𝑁𝑡ℎ𝐴𝑏𝑠𝑅𝑜𝑜𝑡(𝑎, 𝑏) = 0, 𝑤ℎ𝑒𝑛 𝑏 = 0

The use of absolute value is for computational stability. This addition is required as the

program will need to create an inverse of the function, otherwise finding the solution would

not be possible.

Natural Computing – Coursework – B248125 19

Safe_fraction also could be added to the alphabet. This function can be expressed as:

𝑆𝑎𝑓𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑎, 𝑏) =
𝑎

𝑏
, 𝑤ℎ𝑒𝑛 𝑏 ≠ 0

𝑆𝑎𝑓𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑎, 𝑏) =
𝑎

1
, 𝑤ℎ𝑒𝑛 𝑏 = 0

Exponentation function could added to the alphabet. This function can be expressed as:

Exponentiation(𝑎, 𝑏) = 𝑎𝑏 , 𝑤ℎ𝑒𝑛 𝑎 ≠ 0 𝑜𝑟 𝑏 ≥ 0

Exponentiation(𝑎, 𝑏) = 0, 𝑤ℎ𝑒𝑛 𝑎 = 0 𝑎𝑛𝑑 𝑏 < 0

Both of these functions have to have the additional case to account for the division of zero, as

computational stability is important.

Natural Computing – Coursework – B248125 20

Appendix:

Rastrigin fitness function code:

def evaluate_fitness(self, solution: np.ndarray) -> float:

 penalties = 0

 # apply a penalty for values over max

 penalties += np.sum(solution[solution > self.solution_boundary[1]] ** 2)

 # apply a penalty for values below min

 penalties += np.sum(solution[solution < self.solution_boundary[0]] ** 2)

 # we are trying to minimise penalties and the function therefore fitness will
be * -1

 return (NDimensionalRastriginProblem.__variable_rastrigin_function(solution) +
penalties) * -1

Sumplete problem proposed fitness function code:

def evaluate_fitness(self, solution: np.ndarray) -> float:

 solution_sums = self.game.calculate_the_sums_given_solution(solution)

 row_wise_errors_squared = (self.game.correct_sums['rows'] - solution_sums[0])
** 2

 column_wise_errors_squared = (self.game.correct_sums['cols'] -
solution_sums[1]) ** 2

 reaching_zero_reward = (len(row_wise_errors_squared[row_wise_errors_squared ==
0]) +

len(column_wise_errors_squared[column_wise_errors_squared == 0])) * 4

 # Because we are minimising the error, we multiply by -1

 return (np.sum(row_wise_errors_squared) + np.sum(column_wise_errors_squared))
* -1 + reaching_zero_reward

Mutation scheme for the GP code:

def grow_randomly(self, wanted_depth):
 def generate_terminal():
 if random.random() < 0.5:

Natural Computing – Coursework – B248125 21

 self.stored = 'constant-' + str(
 self.problem.possible_constants[
 random.randint(0, len(self.problem.possible_constants) - 1)
])
 else:
 self.stored = 'input-' + str(random.randint(0,
self.problem.input_vector_length - 1))

 if wanted_depth == 1:
 generate_terminal()
 elif wanted_depth > 1:
 random_chance = random.random()
 if random_chance < 0.3:
 generate_terminal()
 else:
 self.stored = 'function-' + self.problem.function_labels[
 random.randint(0, len(self.problem.function_labels) - 1)]

 new_left = MathematicalFunctionTreeNode(self.problem, 'input-0')
 new_right = MathematicalFunctionTreeNode(self.problem, 'input-0')

 new_left.grow_randomly(wanted_depth - 1)
 new_right.grow_randomly(wanted_depth - 1)

 self.left = new_left
 self.right = new_right

def mutate(self, mutation_prob):

 dice_roll = random.random()

 if dice_roll < mutation_prob:

 self.grow_randomly(2)

 else:

 if self.left:

 self.left.mutate(mutation_prob)

 if self.right:

 self.right.mutate(mutation_prob)

Crossover scheme code for GP:

def make_copy(self):

 copy = MathematicalFunctionTreeNode(self.problem, self.stored)

 if self.left:

 copy.left = self.left.make_copy()

 if self.right:

 copy.right = self.right.make_copy()

 return copy

def cut_and_return_copy(self, index):

 if index == 0:

 return self.make_copy()

 else:

 index -= 1

 if self.left:

 left_volume = self.left.get_volume()

 if index < left_volume:

 return self.left.cut_and_return_copy(index)

 else:

 index -= left_volume

 if self.right:

Natural Computing – Coursework – B248125 22

 right_volume = self.right.get_volume()

 if index < right_volume:

 return self.right.cut_and_return_copy(index)

 raise IndexError('index exceeds tree size')

does not work for replacing the root

def insert_tree(self, index, inserted_tree):

 if index == 0:

 raise IndexError('index has reached zero')

 elif index == 1:

 self.left = inserted_tree

 return

 else:

 index -= 1

 if self.left:

 left_volume = self.left.get_volume()

 if index < left_volume:

 return self.left.insert_tree(index, inserted_tree)

 else:

 index -= left_volume

 if index == 0:

 self.right = inserted_tree

 return

 elif self.right:

 right_volume = self.right.get_volume()

 if index < right_volume:

 return self.right.insert_tree(index, inserted_tree)

 raise IndexError('index exceeds tree size')

def crossover(self, other):

 self_volume = self.get_volume()

 other_volume = other.get_volume()

 if self_volume == 1 or other_volume == 1:

 # crossover with just one node does not contribute much but makes

the algorithm more complicated

 return

 self_cut_index = random.randint(1, self.get_volume()-1)

 other_cut_index = random.randint(1, other.get_volume()-1)

 inserted_tree = other.cut_and_return_copy(other_cut_index)

 self.insert_tree(self_cut_index, inserted_tree)

Code for calculating the output of a solution:

def calculate(self, inputs):

 if 'input-' in self.stored:

 return inputs[int(self.stored[6:])]

 elif 'constant-' in self.stored:

 return float(self.stored[9:])

 elif 'function-' in self.stored:

 function_label = self.stored[9:]

 function = self.problem.name_to_function_map[function_label]

 return function(self.left.calculate(inputs),

self.right.calculate(inputs))

Fitness Evaluation in the GP problem:

def evaluate_fitness(self, solution) -> float:

 sum_of_errors = 0

 for inputs, target in self.training_data:

Natural Computing – Coursework – B248125 23

 output = solution.calculate(inputs)

 sum_of_errors += abs(target - output)**self.fitness_error_exponent

 return -1 * sum_of_errors

